Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 845
Filtrar
Más filtros

Medicinas Complementárias
Intervalo de año de publicación
1.
J Comp Neurol ; 532(3): e25595, 2024 03.
Artículo en Inglés | MEDLINE | ID: mdl-38427380

RESUMEN

The thalamus is one of the most important divisions of the forebrain because it serves as the major hub for transmission of information between the brainstem and telencephalon. While many studies have investigated the thalamus in mammals, comparable analyses in reptiles are incomplete. To fill this gap in knowledge, the thalamus was investigated in crocodiles using a variety of morphological techniques. The thalamus consists of two parts: a dorsal and a ventral division. The dorsal thalamus was defined by its projections to the telencephalon, whereas the ventral thalamus lacked this circuit. The complement of nuclei in each part of the thalamus was identified and characterized. Alar and basal components of both the dorsal and ventral thalamus were distinguished. Although some alar-derived nuclei in the dorsal thalamus shared certain features, no grouping could account for all of the known nuclei. However, immunohistochemical observations suggested a subdivision of alar-derived ventral thalamic nuclei. In view of this, a different approach to the organization of the dorsal thalamus should be considered. Development of the dorsal thalamus is suggested to be one way to provide a fresh perspective on its organization.


Asunto(s)
Caimanes y Cocodrilos , Animales , Tálamo/anatomía & histología , Mamíferos , Núcleos Talámicos Ventrales , Telencéfalo , Núcleos Talámicos/anatomía & histología
2.
Curr Biol ; 33(22): 4937-4949.e3, 2023 11 20.
Artículo en Inglés | MEDLINE | ID: mdl-37898122

RESUMEN

Bluehead wrasses (Thalassoma bifasciatum) follow a socially controlled mechanism of sex determination. A socially dominant initial-phase (IP) female is able to transform into a new terminal-phase (TP) male if the resident TP male is no longer present. TP males display an elaborate array of courtship behaviors, including both color changes and motor behaviors. Little is known concerning the neural circuits that control male-typical courtship behaviors. This study used glutamate iontophoresis to identify regions that may be involved in courtship. Stimulation of the following brain regions elicited diverse types of color change responses, many of which appear similar to courtship color changes: the ventral telencephalon (supracommissural nucleus of the ventral telencephalon [Vs], lateral nucleus of the ventral telencephalon [Vl], ventral nucleus of the ventral telencephalon [Vv], and dorsal nucleus of the ventral telencephalon [Vd]), parts of the preoptic area (NPOmg and NPOpc), entopeduncular nucleus, habenular nucleus, and pretectal nuclei (PSi and PSm). Stimulation of two regions in the posterior thalamus (central posterior thalamic [CP] and dorsal posterior thalamic [DP]) caused movements of the pectoral fins that are similar to courtship fluttering and vibrations. Furthermore, these responses were elicited in female IP fish, indicating that circuits for sexual behaviors typical of TP males exist in females. Immunohistochemistry results revealed regions that are more active in fish that are not courting: interpeduncular nucleus, red nucleus, and ventrolateral thalamus (VL). Taken together, we propose that the telencephalic-habenular-interpeduncular pathway plays an important role in controlling and regulating courtship behaviors in TP males; in this model, in response to telencephalic input, the habenular nucleus inhibits the interpeduncular nucleus, thereby dis-inhibiting forebrain regions and promoting the expression of courtship behaviors.


Asunto(s)
Cortejo , Perciformes , Animales , Femenino , Masculino , Telencéfalo/fisiología , Prosencéfalo , Tálamo , Perciformes/fisiología , Peces
3.
Sci Rep ; 13(1): 15715, 2023 09 21.
Artículo en Inglés | MEDLINE | ID: mdl-37735606

RESUMEN

Chronic lead (Pb) poisoning is one of the greatest public health risks. The nervous system is the primary and most vulnerable target of Pb poisoning. Selenium (Se) has been shown to be a potential protection against heavy metal toxicity through anti-inflammatory and antioxidant properties. Therefore, the present study aimed to elucidate the possible protective role of Se in ameliorating the effects of Pb on rat cerebral structure by examining oxidative stress and markers of apoptosis. The rats were divided into 6 groups: control group, Se group, low Pb group, high Pb group, low Pb + Se group, high Pb + Se group. After the 4-week experiment period, cerebral samples were examined using biochemical and histological techniques. Pb ingestion especially when administered in high doses resulted in cerebral injury manifested by a significant increase in glial fibrillary acidic protein, malondialdehyde (MDA) marker of brain oxidation and DNA fragmentation. Moreover, Pb produced alteration of the normal cerebral structure and cellular degeneration with a significant reduction in the total number of neurons and thickness of the frontal cortex with separation of meninges from the cerebral surface. There was also a decrease in total antioxidant capacity. All these changes are greatly improved by adding Se especially in the low Pb + Se group. The cerebral structure showed a relatively normal histological appearance with normally attached pia and an improvement in neuronal structure. There was also a decrease in MDA and DNA fragmentation and an increase TAC. Selenium is suggested to reduce Pb-induced neurotoxicity due to its modulation of oxidative stress and apoptosis.


Asunto(s)
Selenio , Masculino , Animales , Ratas , Selenio/farmacología , Antioxidantes , Plomo/toxicidad , Telencéfalo , Lóbulo Frontal
4.
J Morphol ; 284(2): e21553, 2023 02.
Artículo en Inglés | MEDLINE | ID: mdl-36601705

RESUMEN

Androgens and their receptors are present throughout the body. Various structures such as muscles, genitals, and prostate express androgen receptors. The central nervous system also expresses androgen receptors. Androgens cross the blood-brain barrier to reach these central areas. In the central nervous system, androgens are involved in multiple functions. The current study investigated in which forebrain areas androgens are expressed in the male cat. Androgen receptor immunoreactive (AR-IR) nuclei were plotted and the results were quantified with a Heidelberg Topaz II + scanner and Linocolor 5.0 software. The density and intensity of the labeled cells were the main outcomes of interest. The analysis revealed a dense distribution of AR-IR nuclei in the preoptic area, periventricular complex of the hypothalamus, posterior hypothalamic area, ventromedial hypothalamic, parvocellular hypothalamic, infundibular, and supramammillary nucleus. Numerous AR-IR cells were also observed in the dorsal division of the anterior olfactory nucleus, lateral septal nucleus, medial and lateral divisions of the bed nucleus of the stria terminalis, lateral olfactory tract nucleus, anterior amygdaloid area, and the central and medial amygdaloid nuclei. AR-IR nuclei were predominantly observed in areas involved in autonomic and neuroendocrinergic responses which are important for many physiological processes and behaviors.


Asunto(s)
Receptores Androgénicos , Telencéfalo , Animales , Masculino , Andrógenos , Hipotálamo , Receptores Androgénicos/metabolismo , Telencéfalo/metabolismo , Gatos
5.
Horm Behav ; 146: 105277, 2022 11.
Artículo en Inglés | MEDLINE | ID: mdl-36356457

RESUMEN

The mechanisms involved in hedonic regulation of food intake, including endocannabinoid system (ECs) are scarcely known in fish. We recently demonstrate in rainbow trout the presence of a rewarding response mediated by ECs in hypothalamus and telencephalon when fish fed a lipid-enriched diet, and that central administration of main agonists of ECs namely AEA or 2-AG exert a bimodal effect on feed intake in fish with low doses inducing an increase that disappears with the high dose of both endocannabinoids (EC). To assess the precise involvement of the different receptors of the ECs (CNR1, TRPV1, and GPR55) in this response we injected intracerebroventricularly AEA or 2-AG in the absence/presence of specific receptor antagonists (AM251, capsazepine, and ML193; respectively). The presence of antagonists clearly counteracts the effect of EC supporting the specificity of EC action inducing changes not only in ECs but also in GABA and glutamate metabolism ultimately leading to the increase observed in food intake response.


Asunto(s)
Endocannabinoides , Oncorhynchus mykiss , Animales , Endocannabinoides/farmacología , Endocannabinoides/metabolismo , Oncorhynchus mykiss/fisiología , Hipotálamo/metabolismo , Ingestión de Alimentos , Telencéfalo
6.
Front Neural Circuits ; 16: 913480, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36213204

RESUMEN

Somatosensory, taste, vestibular, and auditory information is first processed in the brainstem. From the brainstem, the respective information is relayed to specific regions within the cortex, where these inputs are further processed and integrated with other sensory systems to provide a comprehensive sensory experience. We provide the organization, genetics, and various neuronal connections of four sensory systems: trigeminal, taste, vestibular, and auditory systems. The development of trigeminal fibers is comparable to many sensory systems, for they project mostly contralaterally from the brainstem or spinal cord to the telencephalon. Taste bud information is primarily projected ipsilaterally through the thalamus to reach the insula. The vestibular fibers develop bilateral connections that eventually reach multiple areas of the cortex to provide a complex map. The auditory fibers project in a tonotopic contour to the auditory cortex. The spatial and tonotopic organization of trigeminal and auditory neuron projections are distinct from the taste and vestibular systems. The individual sensory projections within the cortex provide multi-sensory integration in the telencephalon that depends on context-dependent tertiary connections to integrate other cortical sensory systems across the four modalities.


Asunto(s)
Tronco Encefálico , Vestíbulo del Laberinto , Vías Aferentes , Tronco Encefálico/fisiología , Telencéfalo , Tálamo/fisiología , Vestíbulo del Laberinto/fisiología
7.
J Chem Neuroanat ; 118: 102033, 2021 12.
Artículo en Inglés | MEDLINE | ID: mdl-34563637

RESUMEN

The monoaminergic neurotransmitter serotonin (5-HT) acts as a neuromodulator and is associated with a wide range of functions in fish. In this investigation, 5-HT immunoreactivity was studied in the central nervous system (CNS) of the viviparous mosquitofish Gambusia affinis. 5-HT-immunoreactive (5-HT-ir) cells/fibres were observed throughout the subdivisions of ventral and dorsal telencephalon including the olfactory bulb. Several intensely stained 5-HT-ir cells and/or fibres were detected in different areas of the hypothalamus as well as the proximal pars distalis of the pituitary gland. 5-HT-ir cells were restricted to the dorsal and ventral part of the pretectal diencephalic cluster, but only fibres were detected in the anterior, ventromedial and posterior subdivisions of the thalamic nucleus and in the preglomerular complex. In the mesencephalon, 5-HT-ir perikarya, and fibres were seen in the optic tectum, midbrain tegmentum and torus semicircularis. A cluster of prominently labelled 5-HT-ir neurons was observed in the superior raphe nucleus, whereas numerous 5-HT-ir fibres were distributed throughout the rhombencephalic divisions. In addition, a bundle of rostrocaudally running 5-HT-ir fibres was noticed in the spinal cord. This is the first detailed neuroanatomical study in a viviparous teleost, reporting a widespread distribution of 5-HT-ir somata and fibres in the CNS. The results of this study provide new insights into the evolutionarily well conserved nature of the monoaminergic system in the CNS of vertebrates and suggest a role for 5-HT in regulation of several physiological, behavioural and neuroendocrine functions in viviparous teleosts.


Asunto(s)
Química Encefálica/fisiología , Ciprinodontiformes/metabolismo , Neuronas Serotoninérgicas/fisiología , Serotonina/fisiología , Animales , Mapeo Encefálico , Femenino , Hipotálamo/metabolismo , Inmunohistoquímica , Fibras Nerviosas/metabolismo , Telencéfalo/metabolismo
8.
Phytomedicine ; 83: 153469, 2021 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-33535128

RESUMEN

BACKGROUND: Ischemic stroke is a multifactorial disease contributing to mortality and neurological dysfunction. Isoliquiritin (ISL) has been reported to possess a series of pharmacological activities including antioxidant, anti-inflammatory, antifungal, anti-depression, anti-neurotoxicity and pro-angiogenesis activities but whether it can be used for ischemic stroke treatment remains unknown. PURPOSE: The goal of this study is to explore its therapeutic effect on ischemic stroke and demonstrated the potential mechanism of ISL in zebrafish model. METHODS: Using the photothrombotic-induced adult zebrafish model of ischemic stroke, we visualized the telencephalon (Tel) and optic tectum (OT) infarction injury at 24 h post-light exposure for 30 min by TTC and H&E staining. The effect of ISL on neurological deficits was analyzed during open tank swimming by video tracking. The antioxidant activity against ischemia injury was quantified by SOD, GSH-Px and MDA assay. Transcriptome analysis of zebrafish Tel revealed how ISL regulating gene expression to exert protective effect, which were also been validated by real-time quantitative PCR assays. RESULTS: We found for the first time that the Tel tissue was the first damaged site of the whole brain and it showed more sensitivity to the brain ischemic damage compared to the OT. ISL reduced the rate of Tel injury, ameliorated neurological deficits as well as counteracted oxidative damages by increasing SOD, GSH-Px and decreasing MDA activity. GO enrichment demonstrated that ISL protected membrane and membrane function as well as initiate immune regulation in the stress response after ischemia. KEGG pathway analysis pointed out that immune-related pathways, apoptosis as well as necroptosis pathways were more involved in the protective mechanism of ISL. Furthermore, the log2 fold change in expression pattern of 25 genes detected by qRT-PCR was consistent with that by RNA-seq. CONCLUSIONS: Tel was highly sensitive to the brain ischemia injury in zebrafish model of ischemic stroke. ISL significantly exerted protective effect on Tel injury, neurological deficits and oxidative damages. ISL could regulate a variety of genes related to immune, apoptosis and necrosis pathways against complex cascade reaction after ischemia. These findings enriched the study of ISL, making it a novel multi-target agent for ischemic stroke treatment.


Asunto(s)
Isquemia Encefálica/tratamiento farmacológico , Chalcona/análogos & derivados , Glucósidos/farmacología , Accidente Cerebrovascular Isquémico/tratamiento farmacológico , Sustancias Protectoras/farmacología , Telencéfalo/efectos de los fármacos , Animales , Antioxidantes/metabolismo , Antioxidantes/farmacología , Apoptosis/efectos de los fármacos , Isquemia Encefálica/patología , Chalcona/farmacología , Modelos Animales de Enfermedad , Enzimas/metabolismo , Femenino , Accidente Cerebrovascular Isquémico/patología , Masculino , Estrés Oxidativo/efectos de los fármacos , Transducción de Señal/genética , Telencéfalo/metabolismo , Telencéfalo/patología , Pez Cebra , Proteínas de Pez Cebra/genética , Proteínas de Pez Cebra/metabolismo
9.
Brain Struct Funct ; 226(3): 759-785, 2021 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-33544184

RESUMEN

The prethalamic eminence (PThE), a diencephalic caudal neighbor of the telencephalon and alar hypothalamus, is frequently described in mammals and birds as a transient embryonic structure, undetectable in the adult brain. Based on descriptive developmental analysis of Tbr1 gene brain expression in chick embryos, we previously reported that three migratory cellular streams exit the PThE rostralward, targeting multiple sites in the hypothalamus, subpallium and septocommissural area, where eminential cells form distinct nuclei or disperse populations. These conclusions needed experimental corroboration. In this work, we used the homotopic quail-chick chimeric grafting procedure at stages HH10/HH11 to demonstrate by fate-mapping the three predicted tangential migration streams. Some chimeric brains were processed for Tbr1 in situ hybridization, for correlation with our previous approach. Evidence supporting all three postulated migration streams is presented. The results suggested a slight heterochrony among the juxtapeduncular (first), the peripeduncular (next), and the eminentio-septal (last) streams, each of which followed differential routes. A possible effect of such heterochrony on the differential selection of medial to lateral habenular hodologic targets by the migrated neurons is discussed.


Asunto(s)
Hipotálamo/embriología , Neuronas/citología , Codorniz/embriología , Telencéfalo/metabolismo , Animales , Diferenciación Celular/fisiología , Movimiento Celular/fisiología , Embrión de Pollo , Pollos , Diencéfalo/embriología
10.
J Comp Neurol ; 529(10): 2418-2449, 2021 07 01.
Artículo en Inglés | MEDLINE | ID: mdl-33386618

RESUMEN

Deficits in social cognition and behavior are a hallmark of many psychiatric disorders. The medial extended amygdala, including the medial amygdala and the medial bed nucleus of the stria terminalis, is a key component of functional networks involved in sociality. However, this nuclear complex is highly heterogeneous and contains numerous GABAergic and glutamatergic neuron subpopulations. Deciphering the connections of different neurons is essential in order to understand how this structure regulates different aspects of sociality, and it is necessary to evaluate their differential implication in distinct mental disorders. Developmental studies in different vertebrates are offering new venues to understand neuronal diversity of the medial extended amygdala and are helping to establish a relation between the embryonic origin and molecular signature of distinct neurons with the functional subcircuits in which they are engaged. These studies have provided many details on the distinct GABAergic neurons of the medial extended amygdala, but information on the glutamatergic neurons is still scarce. Using an Otp-eGFP transgenic mouse and multiple fluorescent labeling, we show that most glutamatergic neurons of the medial extended amygdala originate in a distinct telencephalon-opto-hypothalamic embryonic domain (TOH), located at the transition between telencephalon and hypothalamus, which produces Otp-lineage neurons expressing the telencephalic marker Foxg1 but not Nkx2.1 during development. These glutamatergic cells include a subpopulation of projection neurons of the medial amygdala, which activation has been previously shown to promote autistic-like behavior. Our data open new venues for studying the implication of this neuron subtype in neurodevelopmental disorders producing social deficits.


Asunto(s)
Complejo Nuclear Corticomedial/citología , Glutamina/metabolismo , Hipotálamo/citología , Neuronas/citología , Telencéfalo/citología , Animales , Linaje de la Célula , Femenino , Factores de Transcripción Forkhead/metabolismo , Proteínas de Homeodominio/metabolismo , Masculino , Ratones , Ratones Transgénicos , Proteínas del Tejido Nervioso/metabolismo , Neurogénesis/fisiología , Neuronas/metabolismo
11.
Acta Neuropathol Commun ; 8(1): 208, 2020 11 30.
Artículo en Inglés | MEDLINE | ID: mdl-33256853

RESUMEN

Alcohol affects multiple neurotransmitter systems, notably the GABAergic system and has been recognised for a long time as particularly damaging during critical stages of brain development. Nevertheless, data from the literature are most often derived from animal or in vitro models. In order to study the production, migration and cortical density disturbances of GABAergic interneurons upon prenatal alcohol exposure, we performed immunohistochemical studies by means of the proliferation marker Ki67, GABA and calretinin antibodies in the frontal cortical plate of 17 foetal and infant brains antenatally exposed to alcohol, aged 15 weeks' gestation to 22 postnatal months and in the ganglionic eminences and the subventricular zone of the dorsal telencephalon until their regression, i.e., 34 weeks' gestation. Results were compared with those obtained in 17 control brains aged 14 weeks of gestation to 35 postnatal months. We also focused on interneuron vascular migration along the cortical microvessels by confocal microscopy with double immunolabellings using Glut1, GABA and calretinin. Semi-quantitative and quantitative analyses of GABAergic and calretininergic interneuron density allowed us to identify an insufficient and delayed production of GABAergic interneurons in the ganglionic eminences during the two first trimesters of the pregnancy and a delayed incorporation into the laminar structures of the frontal cortex. Moreover, a mispositioning of GABAergic and calretininergic interneurons persisted throughout the foetal life, these cells being located in the deep layers instead of the superficial layers II and III. Moreover, vascular migration of calretininergic interneurons within the cortical plate was impaired, as reflected by low numbers of interneurons observed close to the cortical perforating vessel walls that may in part explain their abnormal intracortical distribution. Our results are globally concordant with those previously obtained in mouse models, in which alcohol has been shown to induce an interneuronopathy by affecting interneuron density and positioning within the cortical plate, and which could account for the neurological disabilities observed in children with foetal alcohol disorder spectrum.


Asunto(s)
Consumo de Bebidas Alcohólicas , Encéfalo/embriología , Calbindina 2/metabolismo , Trastornos del Espectro Alcohólico Fetal/metabolismo , Feto/embriología , Interneuronas/metabolismo , Antígeno Ki-67/metabolismo , Efectos Tardíos de la Exposición Prenatal/metabolismo , Ácido gamma-Aminobutírico/metabolismo , Alcoholismo , Consumo Excesivo de Bebidas Alcohólicas , Encéfalo/metabolismo , Encéfalo/patología , Estudios de Casos y Controles , Movimiento Celular , Femenino , Trastornos del Espectro Alcohólico Fetal/patología , Feto/metabolismo , Feto/patología , Lóbulo Frontal/embriología , Lóbulo Frontal/metabolismo , Lóbulo Frontal/patología , Neuronas GABAérgicas/metabolismo , Neuronas GABAérgicas/patología , Humanos , Lactante , Recién Nacido , Interneuronas/patología , Masculino , Embarazo , Complicaciones del Embarazo , Segundo Trimestre del Embarazo , Efectos Tardíos de la Exposición Prenatal/patología , Telencéfalo/embriología , Telencéfalo/metabolismo , Telencéfalo/patología
12.
Horm Behav ; 125: 104825, 2020 09.
Artículo en Inglés | MEDLINE | ID: mdl-32771417

RESUMEN

The endocannabinoid system (ECs) is a well known contributor to the hedonic regulation of food intake (FI) in mammals whereas in fish, the knowledge regarding hedonic mechanisms that control FI is limited. Previous studies reported the involvement of ECs in FI regulation in fish since anandamide (AEA) treatment induced enhanced FI and changes of mRNA abundance of appetite-related neuropeptides through cannabinoid receptor 1 (cnr1). However, no previous studies in fish evaluated the impact of palatable food like high-fat diets (HFD) on mechanisms involved in hedonic regulation of FI including the possible involvement of ECs. Therefore, we aimed to evaluate the effect of feeding a HFD on the response of ECs in rainbow trout (Oncorhynchus mykiss). First, we demonstrated a higher intake over 4 days of HFD compared with a control diet (CD). Then, we evaluated the postprandial response (1, 3 and 6 h) of components of the ECs in plasma, hypothalamus, and telencephalon after feeding fish with CD and HFD. The results obtained indicate that the increased FI of HFD occurred along with increased levels of 2-arachidonoylglycerol (2-AG) and AEA in plasma and in brain areas like hypothalamus and telencephalon putatively involved in hedonic regulation of FI in fish. Decreased mRNA abundance of EC receptors like cnr1, gpr55 and trpv1 suggest a feed-back counter-regulatory mechanism in response to the increased levels of EC. Furthermore, the results also suggest that neural activity players associated to FI regulation in mammals as cFOS, γ-Amino butyric acid (GABA) and brain derived neurotrophic factor (BDNF)/neurotrophic receptor tyrosine kinase (NTRK) systems could be involved in the hedonic eating response to a palatable diet in fish.


Asunto(s)
Dieta Alta en Grasa , Endocannabinoides/metabolismo , Oncorhynchus mykiss/metabolismo , Receptor Cannabinoide CB1/metabolismo , Animales , Apetito/efectos de los fármacos , Apetito/genética , Regulación del Apetito/efectos de los fármacos , Regulación del Apetito/fisiología , Encéfalo/efectos de los fármacos , Encéfalo/metabolismo , Grasas de la Dieta/farmacología , Ingestión de Alimentos/efectos de los fármacos , Ingestión de Alimentos/genética , Metabolismo Energético/efectos de los fármacos , Metabolismo Energético/genética , Regulación de la Expresión Génica/efectos de los fármacos , Hipotálamo/efectos de los fármacos , Hipotálamo/metabolismo , Neuropéptidos/efectos de los fármacos , Neuropéptidos/genética , Neuropéptidos/metabolismo , Oncorhynchus mykiss/fisiología , Receptor Cannabinoide CB1/genética , Telencéfalo/efectos de los fármacos , Telencéfalo/metabolismo
13.
Sci Rep ; 10(1): 5769, 2020 04 01.
Artículo en Inglés | MEDLINE | ID: mdl-32238844

RESUMEN

Evidence has shown that a variety of vertebrates, including fish, can discriminate collections of visual items on the basis of their numerousness using an evolutionarily conserved system for approximating numerical magnitude (the so-called Approximate Number System, ANS). Here we combine a habituation/dishabituation behavioural task with molecular biology assays to start investigating the neural bases of the ANS in zebrafish. Separate groups of zebrafish underwent a habituation phase with a set of 3 or 9 small red dots, associated with a food reward. The dots changed in size, position and density from trial to trial but maintained their numerousness, and the overall areas of the stimuli was kept constant. During the subsequent dishabituation test, zebrafish faced a change (i) in number (from 3 to 9 or vice versa with the same overall surface), or (ii) in shape (with the same overall surface and number), or (iii) in size (with the same shape and number). A control group of zebrafish was shown the same stimuli as during the habituation. RT-qPCR revealed that the telencephalon and thalamus were characterized by the most consistent modulation of the expression of the immediate early genes c-fos and egr-1 upon change in numerousness; in contrast, the retina and optic tectum responded mainly to changes in stimulus size.


Asunto(s)
Pez Cebra/fisiología , Animales , Aprendizaje Discriminativo , Genes Inmediatos-Precoces , Habituación Psicofisiológica , Masculino , Estimulación Luminosa , Colículos Superiores/fisiología , Telencéfalo/fisiología , Tálamo/fisiología , Percepción Visual , Pez Cebra/genética
14.
FASEB J ; 34(4): 4997-5015, 2020 04.
Artículo en Inglés | MEDLINE | ID: mdl-32052887

RESUMEN

Development of the songbird brain provides an excellent experimental model for understanding the regulation of sex differences in ontogeny. Considering the regulatory role of the hypothalamus in endocrine, in particular reproductive, physiology, we measured the structural (volume) and molecular correlates of hypothalamic development during ontogeny of male and female zebra finches. We quantified by relative quantitative polymerase chain reaction (rqPCR) the expression of 14 genes related to thyroid and steroid hormones actions as well as 12 genes related to brain plasticity at four specific time points during ontogeny and compared these expression patterns with the expression of the same genes as detected by transcriptomics in the telencephalon. These two different methodological approaches detected specific changes with age and demonstrated that in a substantial number of cases changes observed in both brain regions are nearly identical. Other genes however had a tissue-specific developmental pattern. Sex differences or interactions of sex by age were detected in the expression of a subset of genes, more in hypothalamus than telencephalon. These results correlate with multiple known aspects of the developmental and reproductive physiology but also raise a number of new functional questions.


Asunto(s)
Hipotálamo/metabolismo , Desarrollo Sexual , Telencéfalo/metabolismo , Transcriptoma , Animales , Femenino , Pinzones , Regulación del Desarrollo de la Expresión Génica , Hipotálamo/crecimiento & desarrollo , Masculino , Receptores de Hormona Tiroidea/genética , Receptores de Hormona Tiroidea/metabolismo , Caracteres Sexuales , Telencéfalo/crecimiento & desarrollo
15.
Physiol Behav ; 209: 112617, 2019 10 01.
Artículo en Inglés | MEDLINE | ID: mdl-31319109

RESUMEN

To assess the hypothesis that Na+/K+-ATPase (NKA) is involved in the central regulation of food intake in fish, we observed in a first experiment with rainbow trout (Oncorhynchus mykiss) that intracerebroventricular (ICV) treatment with ouabain decreased food intake. We hypothesized that this effect relates to modulation of glucosensing mechanisms in brain areas (hypothalamus, hindbrain, and telencephalon) involved in food intake control. Therefore, we evaluated in a second experiment, the effect of ICV administration of ouabain, in the absence or in the presence of glucose, on NKA activity, mRNA abundance of different NKA subunits, parameters related to glucosensing, transcription factors, and appetite-related neuropeptides in brain areas involved in the control of food intake. NKA activity and mRNA abundance of nkaα1a and nkaα1c in brain were inhibited by ouabain treatment and partially by glucose. The anorectic effect of ouabain is opposed to the orexigenic effect reported in mammals. The difference might relate to the activity of glucosensing as well as downstream mechanisms involved in food intake regulation. Ouabain inhibited glucosensing mechanisms, which were activated by glucose in hypothalamus and telencephalon. Transcription factors and neuropeptides displayed responses comparable to those elicited by glucose when ouabain was administered alone, but not when glucose and ouabain were administered simultaneously. Ouabain might therefore affect other processes, besides glucosensing mechanisms, generating changes in membrane potential and/or intracellular pathways finally modulating transcription factors and neuropeptide mRNA abundance leading to modified food intake.


Asunto(s)
Química Encefálica/fisiología , Ingestión de Alimentos/fisiología , Glucosa/metabolismo , Oncorhynchus mykiss/fisiología , ATPasa Intercambiadora de Sodio-Potasio/metabolismo , Animales , Encéfalo/efectos de los fármacos , Encéfalo/enzimología , Química Encefálica/efectos de los fármacos , Ingestión de Alimentos/efectos de los fármacos , Inhibidores Enzimáticos/farmacología , Hipotálamo/efectos de los fármacos , Hipotálamo/enzimología , Hipotálamo/metabolismo , Infusiones Intraventriculares , Neuropéptidos/metabolismo , Ouabaína/farmacología , ATPasa Intercambiadora de Sodio-Potasio/antagonistas & inhibidores , Telencéfalo/efectos de los fármacos , Telencéfalo/enzimología , Telencéfalo/metabolismo
16.
eNeuro ; 6(1)2019.
Artículo en Inglés | MEDLINE | ID: mdl-30873428

RESUMEN

LIM domain binding protein 1 (LDB1) is a protein cofactor that participates in several multiprotein complexes with transcription factors that regulate mouse forebrain development. Since Ldb1 null mutants display early embryonic lethality, we used a conditional knockout strategy to examine the role of LDB1 in early forebrain development using multiple Cre lines. Loss of Ldb1 from E8.75 using Foxg1Cre caused a disruption of midline boundary structures in the dorsal telencephalon. While this Cre line gave the expected pattern of recombination of the floxed Ldb1 locus, unexpectedly, standard Cre lines that act from embryonic day (E)10.5 (Emx1Cre) and E11.5 (NesCre) did not show efficient or complete recombination in the dorsal telencephalon by E12.5. Intriguingly, this effect was specific to the Ldb1 floxed allele, since three other lines including floxed Ai9 and mTmG reporters, and a floxed Lhx2 line, each displayed the expected spatial patterns of recombination. Furthermore, the incomplete recombination of the floxed Ldb1 locus using NesCre was limited to the dorsal telencephalon, while the ventral telencephalon and the diencephalon displayed the expected loss of Ldb1. This permitted us to examine the requirement for LDB1 in the development of the thalamus in a context wherein the cortex continued to express Ldb1. We report that the somatosensory VB nucleus is profoundly shrunken upon loss of LDB1. Our findings highlight the unusual nature of the Ldb1 locus in terms of recombination efficiency, and also report a novel role for LDB1 during the development of the thalamus.


Asunto(s)
Proteínas de Unión al ADN/metabolismo , Proteínas con Dominio LIM/metabolismo , Telencéfalo/embriología , Telencéfalo/metabolismo , Tálamo/embriología , Tálamo/metabolismo , Animales , Animales Recién Nacidos , Proteínas de Unión al ADN/genética , Femenino , Proteínas con Dominio LIM/genética , Masculino , Ratones Transgénicos
17.
Development ; 145(19)2018 10 02.
Artículo en Inglés | MEDLINE | ID: mdl-30177526

RESUMEN

Trio, a member of the Dbl family of guanine nucleotide exchange factors, activates Rac1 downstream of netrin 1/DCC signalling in axon outgrowth and guidance. Although it has been proposed that Trio also activates RhoA, the putative upstream factors remain unknown. Here, we show that Slit2 induces Trio-dependent RhoA activation, revealing a crosstalk between Slit and Trio/RhoA signalling. Consistently, we found that RhoA activity is hindered in vivo in Trio mutant mouse embryos. We next studied the development of the ventral telencephalon and thalamocortical axons, which have been previously shown to be controlled by Slit2. Remarkably, this analysis revealed that Trio knockout (KO) mice show phenotypes that bear strong similarities to the ones that have been reported in Slit2 KO mice in both guidepost corridor cells and thalamocortical axon pathfinding in the ventral telencephalon. Taken together, our results show that Trio induces RhoA activation downstream of Slit2, and support a functional role in ensuring the proper positioning of both guidepost cells and a major axonal tract. Our study indicates a novel role for Trio in Slit2 signalling and forebrain wiring, highlighting its role in multiple guidance pathways as well as in biological functions of importance for a factor involved in human brain disorders.


Asunto(s)
Tipificación del Cuerpo , Factores de Intercambio de Guanina Nucleótido/metabolismo , Péptidos y Proteínas de Señalización Intercelular/metabolismo , Proteínas del Tejido Nervioso/metabolismo , Fosfoproteínas/metabolismo , Proteínas Serina-Treonina Quinasas/metabolismo , Telencéfalo/embriología , Telencéfalo/metabolismo , Proteína de Unión al GTP rhoA/metabolismo , Animales , Orientación del Axón , Axones/metabolismo , Embrión de Mamíferos/citología , Fibroblastos/metabolismo , Regulación del Desarrollo de la Expresión Génica , Conos de Crecimiento/metabolismo , Factores de Intercambio de Guanina Nucleótido/genética , Péptidos y Proteínas de Señalización Intercelular/genética , Ratones Noqueados , Modelos Biológicos , Proteínas del Tejido Nervioso/genética , Neuronas/metabolismo , Fosfoproteínas/genética , Proteínas Serina-Treonina Quinasas/genética , ARN Mensajero/genética , ARN Mensajero/metabolismo , Tálamo/embriología , Tálamo/metabolismo
18.
J Exp Biol ; 221(Pt 5)2018 03 09.
Artículo en Inglés | MEDLINE | ID: mdl-29361582

RESUMEN

Allocating attention to biologically relevant stimuli in a complex environment is critically important for survival and reproductive success. In humans, attention modulation is regulated by the frontal cortex, and is often reflected by changes in specific components of the event-related potential (ERP). Although brain networks for attention modulation have been widely studied in primates and avian species, little is known about attention modulation in amphibians. The present study aimed to investigate the attention modulation networks in an anuran species, the Emei music frog (Babina daunchina). Male music frogs produce advertisement calls from within underground nest burrows that modify the acoustic features of the calls, and both males and females prefer calls produced from inside burrows. We broadcast call stimuli to male and female music frogs while simultaneously recording electroencephalographic (EEG) signals from the telencephalon and mesencephalon. Granger causal connectivity analysis was used to elucidate functional brain networks within the time window of ERP components. The results show that calls produced from inside nests which are highly sexually attractive result in the strongest brain connections; both ascending and descending connections involving the left telencephalon were stronger in males while those in females were stronger with the right telencephalon. Our findings indicate that the frog brain allocates neural attention resources to highly attractive sounds within the window of early components of ERP, and that such processing is sexually dimorphic, presumably reflecting the different reproductive strategies of males and females.


Asunto(s)
Atención/fisiología , Percepción Auditiva/fisiología , Ranidae/fisiología , Caracteres Sexuales , Vocalización Animal/fisiología , Estimulación Acústica , Animales , Electroencefalografía , Potenciales Evocados , Femenino , Masculino , Mesencéfalo/fisiología , Conducta Sexual Animal/fisiología , Telencéfalo/fisiología
19.
Toxicol Lett ; 284: 113-119, 2018 Mar 01.
Artículo en Inglés | MEDLINE | ID: mdl-29248573

RESUMEN

Bisphenol A (BPA) is a widely used compound in the food packaging industry. Prenatal exposure to BPA induces histological abnormalities in the neocortex and hypothalamus in association with abnormal behaviors. Yet, the molecular and cellular neurodevelopmental toxicological mechanisms of BPA are incompletely characterized on neuroinflammatory-related endopoints. To evaluate the neurodevelopmental effects of BPA exposure in mouse embryos, we examined microglial numbers as well as the expression of microglial-related factors in the E15.5 embryonic brain. BPA-exposed embryos exhibited significant increases in Iba1-immunoreactive microglial numbers in the dorsal telencephalon and the hypothalamus compared to control embryos. Further, the expression levels of microglial markers (Iba1, CD16, iNOS, and CD206), inflammatory factors (TNFα and IL4), signal transducing molecules (Cx3Cr1 and Cx3Cl1), and neurotrophic factor (IGF1) were altered in BPA-exposed embryos. These findings suggest that BPA exposure increases microglial numbers in the brain and alters the neuroinflammatory status at a transcriptional level. Together, these changes may represent a novel target for neurodevelopmental toxicity assessment after BPA exposure.


Asunto(s)
Compuestos de Bencidrilo/toxicidad , Contaminantes Ambientales/toxicidad , Hipotálamo/efectos de los fármacos , Microglía/efectos de los fármacos , Fenoles/toxicidad , Efectos Tardíos de la Exposición Prenatal/inducido químicamente , Telencéfalo/efectos de los fármacos , Animales , Conducta Animal/efectos de los fármacos , Biomarcadores/análisis , Recuento de Células , Relación Dosis-Respuesta a Droga , Femenino , Embalaje de Alimentos , Expresión Génica/efectos de los fármacos , Hipotálamo/embriología , Mediadores de Inflamación/inmunología , Masculino , Ratones Endogámicos ICR , Microglía/inmunología , Microglía/metabolismo , Microglía/patología , Neurogénesis/efectos de los fármacos , Embarazo , Efectos Tardíos de la Exposición Prenatal/inmunología , Efectos Tardíos de la Exposición Prenatal/metabolismo , Efectos Tardíos de la Exposición Prenatal/patología , Telencéfalo/embriología
20.
BMC Vet Res ; 13(1): 255, 2017 Aug 18.
Artículo en Inglés | MEDLINE | ID: mdl-28821261

RESUMEN

BACKGROUND: Canine visceral leishmaniasis (CVL) is endemic in São Luís Maranhão/Brazil and it leads a varied clinical picture, including neurological signs. RESULTS: Histopathological evaluation showed that 14 dogs exhibited pathological alterations in at least one of the analyzed areas. Of these, mononuclear inflammatory reaction was the most frequent, although other lesions, such as hemorrhage, chromatolysis and gliosis were also observed. The presence of L. infantum amastigotes was confirmed in eight dogs, identified in four regions: telencephalon, hippocampus, thalamus and caudal colliculus, but only one presented neurological signs. Polymerase chain reaction results detected the DNA of the parasite in 11 samples from seven dogs. The positive areas were the telencephalon, thalamus, hippocampus, cerebellum, caudal and rostral colliculus. CONCLUSION: These results reveal that during canine visceral leishmaniasis, the central nervous system may display some alterations, without necessarily exhibiting clinical neurological manifestations. In addition, the L. infantum parasite has the ability to cross the blood brain barrier and penetrate the central nervous system.


Asunto(s)
Sistema Nervioso Central/parasitología , Enfermedades de los Perros/parasitología , Leishmania infantum , Leishmaniasis Visceral/veterinaria , Animales , Sistema Nervioso Central/patología , ADN Protozoario/genética , Enfermedades de los Perros/patología , Perros , Femenino , Hipocampo/parasitología , Hipocampo/patología , Colículos Inferiores/parasitología , Colículos Inferiores/patología , Leishmania infantum/genética , Leishmaniasis Visceral/parasitología , Leishmaniasis Visceral/patología , Masculino , Reacción en Cadena de la Polimerasa/veterinaria , Telencéfalo/parasitología , Telencéfalo/patología , Tálamo/parasitología , Tálamo/patología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA